Stress Induction of Mitochondrial Formate Dehydrogenase in Potato Leaves

نویسندگان

  • Hourton-Cabassa
  • Ambard-Bretteville
  • Moreau
  • Davy de Virville J
  • Rémy
  • Francs-Small
چکیده

In higher plants formate dehydrogenase (FDH, EC 1.2.1.2.) is a mitochondrial, NAD-dependent enzyme. We previously reported that in potato (Solanum tuberosum L.) FDH expression is high in tubers but low in green leaves. Here we show that in isolated tuber mitochondria FDH is involved in formate-dependent O2 uptake coupled to ATP synthesis. The effects of various environmental and chemical factors on FDH expression in leaves were tested using the mitochondrial serine hydroxymethyltransferase as a control. The abundance of FDH transcripts is strongly increased under various stresses, whereas serine hydroxymethyltransferase transcripts decline. The application of formate to leaves strongly enhances FDH expression, suggesting that it might be the signal for FDH induction. Our experiments using glycolytic products suggest that glycolysis may play an important role in formate synthesis in leaves in the dark and during hypoxia, and in tubers. Of particular interest is the dramatic accumulation of FDH transcripts after spraying methanol on leaves, as this compound is known to increase the yields of C3 plants. In addition, although the steady-state levels of FDH transcript increase very quickly in response to stress, protein accumulation is much slower, but can eventually reach the same levels in leaves as in tubers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pepper mitochondrial FORMATE DEHYDROGENASE1 regulates cell death and defense responses against bacterial pathogens.

Formate dehydrogenase (FDH; EC 1.2.1.2) is an NAD-dependent enzyme that catalyzes the oxidation of formate to carbon dioxide. Here, we report the identification and characterization of pepper (Capsicum annuum) mitochondrial FDH1 as a positive regulator of cell death and defense responses. Transient expression of FDH1 caused hypersensitive response (HR)-like cell death in pepper and Nicotiana be...

متن کامل

Patterns of mitochondrial gene expression in rapeseed leaves (Brassica napus L.) at early growth stage in response to drought stress

Drought stress adversely affects a plant’s growth and productivity. Wide ranges of molecular disorders could be caused by the production of reactive oxygen radicals. Plant cells have developed potential systems to prevent such damage by scavenging and reducing the reactive oxygen species (ROS). In this study, both the genotypes of oilseed rape-tolerant and sensitive to drought-were exposed to p...

متن کامل

Oxidation of formate by peroxisomes and mitochondria from spinach leaves.

1. Spinach (Spinacia oleracea L.) leaf extracts catalyse the oxidation of formate to CO(2). 2. Two enzymic systems are responsible for this oxidation, the peroxidatic action of catalase (EC 1.11.1.6) and NAD-dependent formate dehydrogenase (EC 1.2.1.2). 3. Formate dehydrogenase is mainly, if not exclusively, located in the mitochondria. This enzyme has a pH optimum of 6-6.5 and a K(m) for forma...

متن کامل

Identification of a major soluble protein in mitochondria from nonphotosynthetic tissues as NAD-dependent formate dehydrogenase.

In many plant species, one of the most abundant soluble proteins (as judged by two-dimensional polyacrylamide gel electrophoresis) in mitochondria from nongreen tissues is a 40-kD polypeptide that is relatively scarce in mitochondria from photosynthetic tissues. cDNA sequences encoding this polypeptide were isolated from a lambda gt11 cDNA expression library from potato (Solanum tuberosum L.) b...

متن کامل

A Formate Dehydrogenase Confers Tolerance to Aluminum and Low pH1[OPEN]

Formate dehydrogenase (FDH) is involved in various higher plant abiotic stress responses. Here, we investigated the role of rice bean (Vigna umbellata) VuFDH in Al and low pH (H) tolerance. Screening of various potential substrates for the VuFDH protein demonstrated that it functions as a formate dehydrogenase. Quantitative reverse transcription-PCR and histochemical analysis showed that the ex...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 116 2  شماره 

صفحات  -

تاریخ انتشار 1998